Plans for a New Front-End for the existing FNAL Linac

C.Y. Tan/W. Pellico 8 Sep 2010 Project X Collaboration Meeting 2010

People (Additional Help – Needed/Requested)

- AD people:
 - W. Pellico (head of proton source), C.Y. Tan, J. Lackey, D. Bollinger,
 K. Duel, R. Riley, V. Scarpine.
- TD people:
 - G. Velev, V. Kashikhin, A. Makarov
- Thanks to BNL pre-injector group
 - J. Alessi, D. Raparia, M. Okamura, V. Lodestro.

Present Injector – Vintage 1968 Hardware

- Magnetron Source
 - 35 keV ribbon beam
 - Current about 50-60mA
- Cockcroft Waltons
 - 750keV
 - Current about 45 55 mA
- MEBT section.
 - Quads and buncher before Tank 1
 - Dipole to accommodate another H- source + Cockcroft Walton

Reasons for Upgrade

- The components are getting harder to maintain
 - Critical personnel have retired.
 - Components getting harder to find and replace
 - Critical failure of I- column in early 2010 which required a rebuild.
- As system ages, more time and attention required to maintain reliability of system.
- Going to RFQ system should increase beam quality and system reliability.
 - Very good results from BNL when they switched from Cockcroft-Walton to RFQ system. Done in 1989. (21 years late to the party)

Objectives

- This is not an R&D project
- Copy as much as possible from an existing injector
 - BNL injector is used as basis of design.
- Use as much as possible existing infrastructure, technology and expertise.
 - Convert slit magnetron source to round magnetron source
 - BNL style source. Very good reliability and performance > 90mA at 500 us, more than 6 months before any change required.
 - 750keV RFQ 60mA 200MHz (not technology limited)
- Better performance
 - At least 10-15% improvement in efficiency to Booster.
- Support future operations Nova, Mu2E, MicroBooNE, G-2, RunIII

Overall Design

The H- Source

In the process of bringing up the H-source

- 60mA at 26kV extraction voltage
- Should get 90mA at 35kV extraction.

LEBT

- LEBT < 1.2 m long
- 2 sources for reliability.
- Will probably use Xe gas neutralization of H-
- Solenoids are being built right now. Delivery expected by the end of the year.

Chopper

Preliminary experiments have shown that Einzel lens will not spark at 37kV with or without H-

Reason for chopper

- Want rise/fall time of H- < 1us.
- Want control of length of pulse.

RFQ

- 750keV RFQ.
- 60mA beam current
- 1.3m long.
- Rod design.
- Alwin Schempp designer
- Expected delivery, early 2011

MEBT

Near identical copy of BNL MEBT

- Only 73.25 cm long
- Buncher will be bought from Time.com (Japan)
- Quads (45mm) being designed in TD with correction dipoles

Buncher

Pictures from BNL. Thanks to M. Okamura.

FILE: injector1.odp / Sep 1, 2010 / Page 12 cytan@fnal.gov

Parmila Simulations

Using 60mA beam from end of RFQ to end of Tank 1 we get 80% capture (without optimizing the quad strengths in Tank 1)

End of Tank 1

Conclusion

- Goal is to complete testing of injector before the shutdown of 2011.
 - Installation will probably take 3 months
- Lots of things to do before then
 - Complete commissioning of the H- source
 - Test Einzel lens as chopper.
 - Check and condition buncher.
 - Check and condition RFQ
 - Have test stand ready for beam test
 - Build and complete solenoids.
 - Build and complete quadrupoles.